How Triton can help to reverse virtual machine based

software protections

How to don't kill yourself when you reverse obfuscated codes.

Jonathan Salwan and Romain Thomas
CSAW SOS in NYC, November 10, 2016

Quarkslat

Romain Thomas

e Security Research Engineer at Quarkslab

e Working on obfuscation and software protection
Jonathan Salwan

e Security Research Engineer at Quarkslab

e Working on program analysis and software verification

Roadmap of this talk

Part 1 Short introduction to the Triton framework
Part 2 Short introduction to virtual machine based software protections
Part 3 Demo - Triton vs VMs

The Triton framework [6]

Triton in a nutshell

e A Dynamic Binary Analysis Framework
e Deals with the Intel x86 and x86_64 Instruction Set Architecture (/SA)
e Contains:

Dynamic Symbolic Execution (DSE) engine [4, 7]
Taint analysis engine

Emulation engine

e Representation of the ISA behaviour into an Abstract Syntax Tree (AST)
AST simplification engine

Two syntax representations of the AST

e Python
e SMT2

Triton’s design

Example of Tracers

API

"1 C++/Python

LibTriton.so

. Symbolic IR
E-rr%ir:\te Execution SMT2-Lib
Engine Semantics
SMT SMT SMT
Solver Optimization Simplifications
Interface Passes Rules

Triton internal components

The API’s input - Opcode to semantics

Instruction

API

Instruction semantics
over AST

The API’s input - Semantics with a context

Context

= | AP| | =P

Instruction

Instruction semantics
over AST

The API’s input - Taint Analysis

= | AP| | =P

Instruction semantics Taint analysis
over AST

The API’s input - Symbolic Execution

Instruction semantics
over AST

e

API

Symbolic Execution

10

The API’s input - Simplifi

Instruction semantics
over AST

e

API

=

Simplification / Transformation

11

The API’s input - AST representations

(bvadd (_bvi 8) (_ bv2 8))

e

((0x1 + 0x2) & OXFF)

Instruction semantics
over AST

12

The API’s input - Symbolic Emulation

Instruction 1

Instruction 2

Instruction 3

API

Instruction 4

13

Example - How to define an opcode and context

>>> inst = Instruction("\x48\x31\xD0") # zor raz, rdzx
>>> inst.setAddress(0x400000)
>>> inst.updateContext (Register (REG.RAX, 0x1234))

>>> inst.updateContext (Register (REG.RDX, 0x5678))

>>> processing(inst)

14

Example - How to get semantics expressions

>>> processing(inst)

>>> print inst
400000: xor rax, rdx

>>> for expr in inst.getSymbolicExpressions():

print expr

ref_0 = (0x1234 ~ 05678) # XOR operation

ref_1 = 0x0O # Clears carry flag

ref_2 = 0x0 # Clears overflow flag

ref_3 = ((0x1 =~ [... skipped ...] & 0x1)) # Parity flag

ref_4 = ((ref_0 >> 63) & 0x1) # Sign flag

ref_5 = (0x1 if (ref_0 == 0x0) else 0x0) # Zero flag

ref_6 = 0x400003 # Program Counter 15

Example - How to get implicit and explicit read registers

>>> for r in inst.getReadRegisters():

print r

(rax:64 bv[63..0], 0x1234)
(rdx:64 bv[63..0], 0x5678)

16

Example - How to get implicit and explicit written registers

>>> for w in inst.getWrittenRegisters():

print w

(rax:64 bv[63..0], (0x1234 ~ 0x5678))

(rip:64 bv[63..0], 0x400003)

(cf:1 bv[0..0], 0x0)

(of:1 bv[0..0], 0x0)

(pf:1 bv[0..0], ... skipped ...)

(sf:1 bv[0..0], ((ref_0 >> 63) & 0x1))

(zf:1 bv[0..0], (0x1 if (ref_0 == 0x0) else 0x0))

17

To resume: What kind of information can | get from an instruction?

e All implicit and explicit semantics of an instruction
e GET, PUT, LOAD, STORE

e Semantics (side effects included) representation via an abstract syntax tree based
on the Static Single Assignment (SSA) form

18

What about emulation?

>>> instl = Instruction("\x48\xc7\xc0\x05\x00\x00\x00") # mov razxz, 5
>>> inst2 = Instruction("\x48\x83\xC0\x02") # add raz, 2

>>> processing(inst1)
>>> processing(inst2)

>>> getFullAstFromId(getSymbolicRegisterId(REG.RAX))
((0x5 + 0x2) & OxFFFFFFFFFFFFFFFF)

>>> getAstFromId(getSymbolicRegisterId(REG.RAX)) .evaluate()
TL

19

Ok, but what can | do with all of this?

e Use taint analysis to help during reverse engineering

e Use symbolic execution to cover code

e Use symbolic execution to know what value(s) can hold a register or memory cell
e Simplify expressions for deobfuscation

e Transform expressions for obfuscation

e Match behaviour models for vulnerabilities research

e Be imaginative :)

20

Mmmmh, and where instruction sequences can come from?

e From dynamic tracers like Pin, Valgrind, Qemu, ...
e From a memory dump

e From static tools like IDA or whatever...

21

Cool, but how many instruction semantics are supported by Triton?

e Development:

e 256 Intel x86_64 instructions !
e Included 116 SSE/MMX/AVX instructions

e Testing:
e The tests suite 2 of the Qemu TCG 3
e Traces differential *

http://triton.quarkslab.com /documentation /doxygen /SMT_Semantics_Supported_page.html
*http://github.com/qemu/qemu /tree/master /tests/tcg

3http: / /wiki.qemu.org/Documentation/TCG

“http://triton.quarkslab.com /blog/What-kind-of-semantics-information-Triton-can-provide / #4

22

Virtual Machine Based Software

Protections

VM Based Software Protections

Definition:
It's a kind of obfuscation which transforms an original instruction set (e.g. x86) into
another custom instruction set (VM implementation).

24

Example: Virtualization

mov rax, 0x123456 push Ox1 # raz_2d
push 0x123456
call VM_MOVE

and rax, rbx push rbx
push rax

mov rcx, [rspl]
mov rdx, [rsp - 0x4]
and rcx, rdx

mov rax, rcx

call func mov rbx, 0x1

call trampoline .

Where are VMs

Languages: Python, Java...

Obfuscator: VM Protect 5, Tigress ° [1, 3], Denuvo 7
Malwares: Zeus 8

o CTF...

*http:/ /vmpsoft.com/

®http://tigress.cs.arizona.edu/

Thttp: //www.denuvo.com/
8http://www.miasm.re/blog/2016,/09/03/zeusvm _analysis.html

26

VM abstract architecture

Fetch Instruction

l

Decode Instruction

l

Dispatch

Handler 2

Handler 1

Handler 3

Terminator

27

VM abstract architecture

Fetch Instruction:
Fetch the instruction which will be executed by the VM.

Decode Instruction:

Decode the instruction according to the VM instruction set.
Example:

decode(01 11 12):

e Opcode: 0x01
e Operand 1: 0x11
e Operand 2: 0x12

28

VM abstract architecture

Dispatcher:
Jump to the right handler according to opcode and/or operands.

Handlers:

Handlers are the implementation of the VM instruction set.
For instance, the handler for the instruction

mov REG, IMM

could be:

xor REG, REG

or REG, IMM

Terminator:
Finishes the VM execution or continues its execution.

29

We can have two kinds of dispatcher:

e switch case like

e jump table

30

A switch case like dispatcher

31

A jump table based dispatcher

mov
movzx
lea
call
test
jnz

loc_4147D3:

, [ebp+var
eax, byte ptr
ecx, [ebp+var 5¢
off_427018[eax*4]
al, al

short loc_4147D3

eax

sub_40EDE@
sub_4BEDFB
sub_48EE19
sub_40EE3A
sub_40EE64
sub_4BEES2
sub_40EEBE
sub_40EEES
sub_4BEF16
sub_40EF42
sub_40EF6C
sub_4BEF3A
sub_4BEFC6
sub_40EFFD
sub_40F038
sub_48FB70
sub_40F0A7
sub_40FOE2
sub_48F11A
sub_40F13E
sub_40F164
sub_48F189
sub_48F2E2
sub_40F1E2
sub_40F208
sub_48F2380
sub_40F257
sub_40F27F
sub_48F2AF
sub_40F348
sub_40F379

32

Using Triton to reverse a VM

Fetch Instruction

l

Decode Instruction

l

Dispatch

Triton

L |

[Handler 1 J
-

Handler 2

~

[Handler 3

— —0— —

-

Terminator

~

Triton

83

Demo: Tigress VM

Tigress challenges

Number of Difficulty

Challenge Description binaries (1-10) Script Prize Status

0000 One level of virtualization, random dispatch. 5 1 script g;r;j};-cate ssued by Solved
One level of virtualization, superoperators, split . Signed copy of

0001 instruction handlers. > 2 scpt Surreptitious Software. Open
One level of virtualization, bogus functions, implicit . Signed copy of

0002 flow. > 3 script Surreptitious Software. Open
One level of virtualization, instruction handlers Signed copy of

0003 obmstatgd wyh anthmeuc‘encodmg, virtualized 5 2 script Surreptitious Software. Open
function is split and the split parts merged. 2UMepiiions software

0004 Two levels of virtualization, implicit flow. 5 4 script USD 100.00 Open

0005 1%15 level of virtualization, one level of jitting, implicit 5 n scrint USD 100.00 Open

0006 Two levels of jitting, implicit flow. 5 4 script USD 100.00 Open

85

Tigress challenges

$./tigress-challenge 1234
3920664950602727424

$./tigress-challenge 326423564
16724117216240346858

36

Tigress challenges

Problem: Given a very secret algorithm obfuscated with a VM. How can we recover
the algorithm without fully reversing the VM?

37

Step 1: Symbolically emulate the binary

Symbolic
* Emulation

Obfuscated binary

Trace semantics

38

Step 2: Define the user input as symbolic variable

39

Step 3: Concretize everything which is not related to user input

40

Step 4: Use a better canonical representation of expressions

e Arybo [2] uses the Algebraic Normal Form (ANF) representation

Triton AST Arybo AST

41

Step 5: Possible use of symbolic simplifications

Arybo AST Arybo AST
on steroids

8https://pythonhosted.org/arybo/concepts.html

42

Step 6: From Arybo to LLVM-IR

Arybo AST LLVM-IR

43

Step 7: Recompile with -O2 optimization and win!

Deobfuscated binary

LLVM-IR

44

Results with only one trace

Chall 0 Chall 1 Chall -2 Challenge-3 Challenge-4

VM0
VM1
VM 2
VM 3
VM 4
VM 5 not analyzed not analyzed not analyzed not analyzed not analyzed

VM 6 not analyzed not analyzed not analyzed not analyzed not analyzed

Full expressions of the hash algorithm extracted with 100.00% of success

Partial expressions of the hash algorithm extracted without 100.00% of success

45

Cover paths to reconstruct the CFG

46

Results with the union

of two traces

VMO0
VM1
VM 2
VM 3
VM 4
VM 5

Chall 0

not analyzed

not analyzed

not analyzed

Challenge-3

not analyzed

Challenge-4

not analyzed

VM 6

not analyzed

not analyzed

not analyzed

not analyzed

not analyzed

Full expressions of the hash algorithm extracted with 100.00% of success

Partial expressions of the hash algorithm extracted without 100.00% of success. Loops on input

are not trivial to reconstruct — we need more time to work on it.

47

Time of extraction per trace

Chall 0 Chall 1 Challenge-2 Challenge-3 Challenge-4
VMO 3.85 seconds. 9.20 seconds 3.27 seconds 4.26 seconds 1.58 seconds
VM1 1.26 seconds 1.42 seconds 3.27 seconds 2.49 seconds 1.74 seconds
VM 2 6.58 seconds 2.02 seconds 2.63 seconds 4.85 seconds 3.82 seconds
VM 3 45.59 seconds 11.30 seconds 8.84 seconds 4.84 seconds 21.64 seconds
VM 4 361 seconds 315 seconds 588 seconds _

Few seconds to extract the equation and less than 200 MB of RAM used

Few minutes to extract the equation and ~4 GB of RAM used

Few minutes to extract the equation and ~5 GB of RAM used

Few minutes to extract the equation and ~9 GB of RAM used

Few minutes to extract the equation and ~21 GB of RAM used
Few hours to extract the equation and ~170 GB of RAM used

48

Let me try by myself

Release: Everything related to this analysis is available on github °.

°https://github.com/JonathanSalwan/Tigress_protection

49

Demo: Unknown VM

VM Architecture

Fetch Instruction

l

L

Decode Instruction

J

Opo l op1 lopz 10173 10P4 l

-

Dispatch
Switch case

~

Handler 2

Handler 1

Handler 3

Terminator

51

Fetch Instruction

T

Decode Instruction

|- J
UP()T op1 TO,Dz TOP.; T0P4T
Dispatch

Switch case

]

[Handler 2] Handler 1 [Handler 3]
[
Terminator -

53

Fetch Instruction

L

Decode Instruction

J

UP()T op1 TO,Dz TOP.; T0P4T

-

Dispatch
Switch case

~

]

Handler 2

Handler 1

Handler 3

Terminator

54

[Fetch Instruction

T

Decode Instruction

UP()T op1 TO,Dz TOP.; T0P4T

-

Dispatch
Switch case

~

]

g deyS

Handler 2]

Handler 1

Handler 3

Terminator

55

Decode

C1-2
BB,

C2—4

BB3 BB4 cis2 and ca_44

€35

C4—5

(BB4 and c4—5) or (BB3 and c3_,5)

56

Conclusion

Conclusion

e Symbolic execution is powerful against obfuscations
e Use mathematical complexity expressions against such attacks

e The goal is to imply a timeout on SMT solvers side

58

Thanks
Any Questions?

Acknowledgements

e Thanks to Brendan Dolan-Gavitt for his invitation to the S.0.S workshop!

e Kudos to Adrien Guinet for his Arybo 1° framework!

Ohttps://github.com/quarkslab/arybo
60

|IiiHiiHHHHIIEiII

e Romain Thomas

e rthomas at quarkslab com
e OrhOmain

e Jonathan Salwan

e jsalwan at quarkslab com

e QJonathanSalwan

e Triton team

e triton at quarkslab com
e Qgb_triton
e irc: #gb_triton@freenode.org

61

https://twitter.com/rh0main
https://twitter.com/JonathanSalwan
https://twitter.com/qb_triton

References |

[@ C. Collberg, S. Martin, J. Myers, and J. Nagra.
Distributed application tamper detection via continuous software updates.
In Proceedings of the 28th Annual Computer Security Applications Conference,
ACSAC '12, pages 319-328, New York, NY, USA, 2012. ACM.

@ N. Eyrolles, A. Guinet, and M. Videau.
Arybo: Manipulation, canonicalization and identification of mixed
boolean-arithmetic symbolic expressions.
GreHack, France, Grenoble, 2016.

@ Y. Kanzaki, A. Monden, and C. Collberg.
Code artificiality: A metric for the code stealth based on an n-gram model.
In SPRO 2015 International Workshop on Software Protection, 2015.

62

References |

[J. C. King.
Symbolic execution and program testing.
Communications of the ACM, 19(7):385-394, 1976.
[W C. Lattner and V. Adve.

LLVM: A compilation framework for lifelong program analysis and
transformation.
pages 7588, San Jose, CA, USA, Mar 2004.

63

References IlI

[d F. Saudel and J. Salwan.
Triton: A dynamic symbolic execution framework.
In Symposium sur la sécurité des technologies de I'information et des
communications, SSTIC, France, Rennes, June 3-5 2015, pages 31-54. SSTIC,
2015.

@ K. Sen, D. Marinov, and G. Agha.
Cute: a concolic unit testing engine for c.
In ACM SIGSOFT Software Engineering Notes, volume 30, pages 263-272. ACM,
2005.

64

	The Triton framework SSTIC2015-Saudel-Salwan
	Virtual Machine Based Software Protections
	Demo: Tigress VM
	Demo: Unknown VM
	Conclusion

