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The Triton framework [6]



Triton in a nutshell

e A Dynamic Binary Analysis Framework
e Deals with the Intel x86 and x86_64 Instruction Set Architecture (/SA)
e Contains:

Dynamic Symbolic Execution (DSE) engine [4, 7]
Taint analysis engine

Emulation engine

e Representation of the ISA behaviour into an Abstract Syntax Tree (AST)
AST simplification engine

Two syntax representations of the AST

e Python
e SMT2



Triton’s design

Example of Tracers

API

"1 C++/Python

LibTriton.so

. Symbolic IR
E-rr%ir:\te Execution SMT2-Lib
Engine Semantics
SMT SMT SMT
Solver Optimization Simplifications
Interface Passes Rules

Triton internal components




The API’s input - Opcode to semantics

Instruction

API

Instruction semantics
over AST



The API’s input - Semantics with a context

Context

= | AP| | =P

Instruction

Instruction semantics
over AST



The API’s input - Taint Analysis

= | AP| | =P

Instruction semantics Taint analysis
over AST



The API’s input - Symbolic Execution

Instruction semantics
over AST

e

API

Symbolic Execution
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The API’s input - Simplifi

Instruction semantics
over AST

e

API

=

Simplification / Transformation
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The API’s input - AST representations

(bvadd (_bvi 8) (_ bv2 8))

e

((0x1 + 0x2) & OXFF)

Instruction semantics
over AST
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The API’s input - Symbolic Emulation

Instruction 1

Instruction 2

Instruction 3

API

Instruction 4
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Example - How to define an opcode and context

>>> inst = Instruction("\x48\x31\xD0") # zor raz, rdzx
>>> inst.setAddress(0x400000)
>>> inst.updateContext (Register (REG.RAX, 0x1234))

>>> inst.updateContext (Register (REG.RDX, 0x5678))

>>> processing(inst)
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Example - How to get semantics expressions

>>> processing(inst)

>>> print inst
400000: xor rax, rdx

>>> for expr in inst.getSymbolicExpressions():

print expr

ref_0 = (0x1234 ~ 05678) # XOR operation

ref_1 = 0x0O # Clears carry flag

ref_2 = 0x0 # Clears overflow flag

ref_3 = ((0x1 =~ [... skipped ...] & 0x1)) # Parity flag

ref_4 = ((ref_0 >> 63) & 0x1) # Sign flag

ref_5 = (0x1 if (ref_0 == 0x0) else 0x0) # Zero flag

ref_6 = 0x400003 # Program Counter 15



Example - How to get implicit and explicit read registers

>>> for r in inst.getReadRegisters():

print r

(rax:64 bv[63..0], 0x1234)
(rdx:64 bv[63..0], 0x5678)
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Example - How to get implicit and explicit written registers

>>> for w in inst.getWrittenRegisters():

print w

(rax:64 bv[63..0], (0x1234 ~ 0x5678))

(rip:64 bv[63..0], 0x400003)

(cf:1 bv[0..0], 0x0)

(of:1 bv[0..0], 0x0)

(pf:1 bv[0..0], ... skipped ...)

(sf:1 bv[0..0], ((ref_0 >> 63) & 0x1))

(zf:1 bv[0..0], (0x1 if (ref_0 == 0x0) else 0x0))
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To resume: What kind of information can | get from an instruction?

e All implicit and explicit semantics of an instruction
e GET, PUT, LOAD, STORE

e Semantics (side effects included) representation via an abstract syntax tree based
on the Static Single Assignment (SSA) form
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What about emulation?

>>> instl = Instruction("\x48\xc7\xc0\x05\x00\x00\x00") # mov razxz, 5
>>> inst2 = Instruction("\x48\x83\xC0\x02") # add raz, 2

>>> processing(inst1)
>>> processing(inst2)

>>> getFullAstFromId(getSymbolicRegisterId(REG.RAX))
((0x5 + 0x2) & OxFFFFFFFFFFFFFFFF)

>>> getAstFromId(getSymbolicRegisterId(REG.RAX)) .evaluate()
TL
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Ok, but what can | do with all of this?

e Use taint analysis to help during reverse engineering

e Use symbolic execution to cover code

e Use symbolic execution to know what value(s) can hold a register or memory cell
e Simplify expressions for deobfuscation

e Transform expressions for obfuscation

e Match behaviour models for vulnerabilities research

e Be imaginative :)
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Mmmmh, and where instruction sequences can come from?

e From dynamic tracers like Pin, Valgrind, Qemu, ...
e From a memory dump

e From static tools like IDA or whatever...
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Cool, but how many instruction semantics are supported by Triton?

e Development:

e 256 Intel x86_64 instructions !
e Included 116 SSE/MMX/AVX instructions

e Testing:
e The tests suite 2 of the Qemu TCG 3
e Traces differential *

http://triton.quarkslab.com /documentation /doxygen /SMT_Semantics_Supported_page.html
*http://github.com/qemu/qemu /tree/master /tests/tcg

3http: / /wiki.qemu.org/Documentation/TCG

“http://triton.quarkslab.com /blog/What-kind-of-semantics-information-Triton-can-provide / #4
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Virtual Machine Based Software

Protections



VM Based Software Protections

Definition:
It's a kind of obfuscation which transforms an original instruction set (e.g. x86) into
another custom instruction set (VM implementation).
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Example: Virtualization

mov rax, 0x123456 push Ox1 # raz_2d
push 0x123456
call VM_MOVE

and rax, rbx push rbx
push rax

mov rcx, [rspl]
mov rdx, [rsp - 0x4]
and rcx, rdx

mov rax, rcx

call func mov rbx, 0x1

call trampoline .



Where are VMs

Languages: Python, Java...

Obfuscator: VM Protect 5, Tigress ° [1, 3], Denuvo 7
Malwares: Zeus 8

o CTF...

*http:/ /vmpsoft.com/

®http://tigress.cs.arizona.edu/

Thttp: //www.denuvo.com/
8http://www.miasm.re/blog/2016,/09/03/zeusvm _analysis.html
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VM abstract architecture

Fetch Instruction

l

Decode Instruction

l

Dispatch

Handler 2

Handler 1

Handler 3

Terminator
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VM abstract architecture

Fetch Instruction:
Fetch the instruction which will be executed by the VM.

Decode Instruction:

Decode the instruction according to the VM instruction set.
Example:

decode(01 11 12):

e Opcode: 0x01
e Operand 1: 0x11
e Operand 2: 0x12
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VM abstract architecture

Dispatcher:
Jump to the right handler according to opcode and/or operands.

Handlers:

Handlers are the implementation of the VM instruction set.
For instance, the handler for the instruction

mov REG, IMM

could be:

xor REG, REG

or REG, IMM

Terminator:
Finishes the VM execution or continues its execution.
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We can have two kinds of dispatcher:

e switch case like

e jump table
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A switch case like dispatcher
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A jump table based dispatcher

mov
movzx
lea
call
test
jnz

loc_4147D3:

, [ebp+var
eax, byte ptr
ecx, [ebp+var 5¢
off_427018[eax*4]
al, al

short loc_4147D3

eax

sub_40EDE@
sub_4BEDFB
sub_48EE19
sub_40EE3A
sub_40EE64
sub_4BEES2
sub_40EEBE
sub_40EEES
sub_4BEF16
sub_40EF42
sub_40EF6C
sub_4BEF3A
sub_4BEFC6
sub_40EFFD
sub_40F038
sub_48FB70
sub_40F0A7
sub_40FOE2
sub_48F11A
sub_40F13E
sub_40F164
sub_48F189
sub_48F2E2
sub_40F1E2
sub_40F208
sub_48F2380
sub_40F257
sub_40F27F
sub_48F2AF
sub_40F348
sub_40F379
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Using Triton to reverse a VM

Fetch Instruction

l

Decode Instruction

l

Dispatch

Triton

L |

[ Handler 1 J
-

Handler 2

~

[ Handler 3

— —0— —

-

Terminator

~

Triton
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Demo: Tigress VM



Tigress challenges

Number of Difficulty

Challenge Description binaries (1-10) Script Prize Status

0000 One level of virtualization, random dispatch. 5 1 script g;r;j};-cate ssued by Solved
One level of virtualization, superoperators, split . Signed copy of

0001 instruction handlers. > 2 scpt Surreptitious Software. Open
One level of virtualization, bogus functions, implicit . Signed copy of

0002 flow. > 3 script Surreptitious Software. Open
One level of virtualization, instruction handlers Signed copy of

0003 obmstatgd wyh anthmeuc‘encodmg, virtualized 5 2 script Surreptitious Software. Open
function is split and the split parts merged. 2UMepiiions software

0004 Two levels of virtualization, implicit flow. 5 4 script USD 100.00 Open

0005 1%15 level of virtualization, one level of jitting, implicit 5 n scrint USD 100.00 Open

0006 Two levels of jitting, implicit flow. 5 4 script USD 100.00 Open
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Tigress challenges

$ ./tigress-challenge 1234
3920664950602727424

$ ./tigress-challenge 326423564
16724117216240346858

36



Tigress challenges

Problem: Given a very secret algorithm obfuscated with a VM. How can we recover
the algorithm without fully reversing the VM?
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Step 1: Symbolically emulate the binary

Symbolic
* Emulation

Obfuscated binary

Trace semantics
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Step 2: Define the user input as symbolic variable
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Step 3: Concretize everything which is not related to user input
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Step 4: Use a better canonical representation of expressions

e Arybo [2] uses the Algebraic Normal Form (ANF) representation

Triton AST Arybo AST
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Step 5: Possible use of symbolic simplifications

Arybo AST Arybo AST
on steroids

8https://pythonhosted.org/arybo/concepts.html

42



Step 6: From Arybo to LLVM-IR

Arybo AST LLVM-IR
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Step 7: Recompile with -O2 optimization and win!

Deobfuscated binary

LLVM-IR
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Results with only one trace

Chall 0 Chall 1 Chall -2 Challenge-3 Challenge-4

VM0
VM1
VM 2
VM 3
VM 4
VM 5 not analyzed not analyzed not analyzed not analyzed not analyzed

VM 6 not analyzed not analyzed not analyzed not analyzed not analyzed

Full expressions of the hash algorithm extracted with 100.00% of success

Partial expressions of the hash algorithm extracted without 100.00% of success
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Cover paths to reconstruct the CFG
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Results with the union

of two traces

VMO0
VM1
VM 2
VM 3
VM 4
VM 5

Chall 0

not analyzed

not analyzed

not analyzed

Challenge-3

not analyzed

Challenge-4

not analyzed

VM 6

not analyzed

not analyzed

not analyzed

not analyzed

not analyzed

Full expressions of the hash algorithm extracted with 100.00% of success

Partial expressions of the hash algorithm extracted without 100.00% of success. Loops on input

are not trivial to reconstruct — we need more time to work on it.
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Time of extraction per trace

Chall 0 Chall 1 Challenge-2 Challenge-3 Challenge-4
VMO 3.85 seconds. 9.20 seconds 3.27 seconds 4.26 seconds 1.58 seconds
VM1 1.26 seconds 1.42 seconds 3.27 seconds 2.49 seconds 1.74 seconds
VM 2 6.58 seconds 2.02 seconds 2.63 seconds 4.85 seconds 3.82 seconds
VM 3 45.59 seconds 11.30 seconds 8.84 seconds 4.84 seconds 21.64 seconds
VM 4 361 seconds 315 seconds 588 seconds _

Few seconds to extract the equation and less than 200 MB of RAM used

Few minutes to extract the equation and ~4 GB of RAM used

Few minutes to extract the equation and ~5 GB of RAM used

Few minutes to extract the equation and ~9 GB of RAM used

Few minutes to extract the equation and ~21 GB of RAM used
Few hours to extract the equation and ~170 GB of RAM used
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Let me try by myself

Release: Everything related to this analysis is available on github °.

°https://github.com/JonathanSalwan/Tigress_protection
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Demo: Unknown VM




VM Architecture

Fetch Instruction

l

L

Decode Instruction

J

Opo l op1 lopz 10173 10P4 l

-

Dispatch
Switch case

~

Handler 2

Handler 1

Handler 3

Terminator
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Fetch Instruction

T

Decode Instruction

|- J
UP()T op1 TO,Dz TOP.; T0P4T
Dispatch

Switch case

]

[ Handler 2 ] Handler 1 [ Handler 3 ]
[
Terminator -
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Fetch Instruction

L

Decode Instruction

J

UP()T op1 TO,Dz TOP.; T0P4T

-

Dispatch
Switch case

~

]

Handler 2

Handler 1

Handler 3

Terminator
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[ Fetch Instruction

T

Decode Instruction

UP()T op1 TO,Dz TOP.; T0P4T

-

Dispatch
Switch case

~

]

g deyS

Handler 2 ]

Handler 1

Handler 3

Terminator
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Decode

C1-2
BB,

C2—4

BB3 BB4 cis2 and ca_44

€35

C4—5

(BB4 and c4—5) or (BB3 and c3_,5)
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Conclusion




Conclusion

e Symbolic execution is powerful against obfuscations
e Use mathematical complexity expressions against such attacks

e The goal is to imply a timeout on SMT solvers side
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Thanks
Any Questions?
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