Opcode/Instruction | Op /En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|

EVEX.NDS.LIG.66.0F3A.W0 51 /r VRANGESS xmm1 {k1}{z}, xmm2, xmm3/m32{sae}, imm8 |
T1S | V/V | AVX512DQ | Calculate a RANGE operation output value from 2 single-precision floating-point values in xmm2 and xmm3/m32, store the output to xmm1 under writemask. Imm8 specifies the comparison and sign of the range operation. |

Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |

T1S | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | NA |

This instruction calculates a range operation output from two input single-precision FP values in the low dword element of the first source operand (the second operand) and second source operand (the third operand). The range output is written to the low dword element of the destination operand (the first operand) under the writemask k1.

Bits7:4 of imm8 byte must be zero. The range operation output is performed in two parts, each configured by a two-bit control field within imm8[3:0]:

The encodings of Imm8[1:0] and Imm8[3:2] are shown in Figure 5-27.

Bits 128:31 of the destination operand are copied from the respective elements of the first source operand.

When one or more of the input value is a NAN, the comparison operation may signal invalid exception (IE). Details with one of more input value is NAN is listed in Table 5-12. If the comparison raises an IE, the sign select control (Imm8[3:2]) has no effect to the range operation output, this is indicated also in Table 5-12.

When both input values are zeros of opposite signs, the comparison operation of MIN/MAX in the range compare operation is slightly different from the conceptually similar FP MIN/MAX operation that are found in the instructions VMAXPD/VMINPD. The details of MIN/MAX/MIN_ABS/MAX_ABS operation for VRANGEPD/PS/SD/SS for magni-tude-0, opposite-signed input cases are listed in Table 5-13.

Additionally, non-zero, equal-magnitude with opposite-sign input values perform MIN_ABS or MAX_ABS compar-ison operation with result listed in Table 5-14.

RangeSP(SRC1[31:0], SRC2[31:0], CmpOpCtl[1:0], SignSelCtl[1:0]) { // Check if SNAN and report IE, see also Table 5-12 IF (SRC1=SNAN) THEN RETURN (QNAN(SRC1), set IE); IF (SRC2=SNAN) THEN RETURN (QNAN(SRC2), set IE); Src1.exp (cid:197) SRC1[30:23]; Src1.fraction (cid:197) SRC1[22:0]; IF ((Src1.exp = 0 ) and (Src1.fraction != 0 )) THEN// Src1 is a denormal number IF DAZ THEN Src1.fraction (cid:197) 0; ELSE IF (SRC2 <> QNAN) Set DE; FI; FI; Src2.exp (cid:197) SRC2[30:23]; Src2.fraction (cid:197) SRC2[22:0]; IF ((Src2.exp = 0 ) and (Src2.fraction != 0 )) THEN// Src2 is a denormal number IF DAZ THEN Src2.fraction (cid:197) 0; ELSE IF (SRC1 <> QNAN) Set DE; FI; FI; IF (SRC2 = QNAN) THEN{TMP[31:0] (cid:197) SRC1[31:0]} ELSE IF(SRC1 = QNAN) THEN{TMP[31:0] (cid:197) SRC2[31:0]} ELSE IF (Both SRC1, SRC2 are magnitude-0 and opposite-signed) TMP[31:0] (cid:197) from Table 5-13 ELSE IF (Both SRC1, SRC2 are magnitude-equal and opposite-signed and CmpOpCtl[1:0] > 01) TMP[31:0] (cid:197) from Table 5-14 ELSE Case(CmpOpCtl[1:0]) 00: TMP[31:0] (cid:197) (SRC1[31:0] ≤ SRC2[31:0]) ? SRC1[31:0] : SRC2[31:0]; 01: TMP[31:0] (cid:197) (SRC1[31:0] ≤ SRC2[31:0]) ? SRC2[31:0] : SRC1[31:0]; 10: TMP[31:0] (cid:197) (ABS(SRC1[31:0]) ≤ ABS(SRC2[31:0])) ? SRC1[31:0] : SRC2[31:0]; 11: TMP[31:0] (cid:197) (ABS(SRC1[31:0]) ≤ ABS(SRC2[31:0])) ? SRC2[31:0] : SRC1[31:0]; ESAC; FI; Case(SignSelCtl[1:0]) 00: dest (cid:197) (SRC1[31] << 31) OR (TMP[30:0]);// Preserve Src1 sign bit 01: dest (cid:197) TMP[31:0];// Preserve sign of compare result 10: dest (cid:197) (0 << 31) OR (TMP[30:0]);// Zero out sign bit 11: dest (cid:197) (1 << 31) OR (TMP[30:0]);// Set the sign bit ESAC; RETURN dest[31:0]; } CmpOpCtl[1:0]= imm8[1:0]; SignSelCtl[1:0]=imm8[3:2];

IF k1[0] OR *no writemask* THEN DEST[31:0] (cid:197) RangeSP (SRC1[31:0], SRC2[31:0], CmpOpCtl[1:0], SignSelCtl[1:0]); ELSE IF *merging-masking* ; merging-masking THEN *DEST[31:0] remains unchanged* ELSE ; zeroing-masking DEST[31:0] = 0 FI; FI; DEST[127:32] (cid:197) SRC1[127:32] DEST[MAX_VL-1:128] (cid:197) 0 The following example describes a common usage of this instruction for checking that the input operand is bound-ed between ±150. VRANGESS zmm_dst, zmm_src, zmm_150, 02h; Where: xmm_dst is the destination operand. xmm_src is the input operand to compare against ±150. xmm_150 is the reference operand, contains the value of 150. IMM=02(imm8[1:0]=’10) selects the Min Absolute value operation with selection of src1.sign. In case |xmm_src| < 150, then its value will be written into zmm_dst. Otherwise, the value stored in xmm_dst will get the value of 150 (received on zmm_150). However, the sign control (imm8[3:2]=’00) instructs to select the sign of SRC1 received from xmm_src. So, even in the case of |xmm_src| ≥ 150, the selected sign of SRC1 is kept. Thus, if xmm_src < -150, the result of VRANGESS will be the minimal value of -150 while if xmm_src > +150, the result of VRANGE will be the maximal value of +150.

VRANGESS __m128 _mm_range_ss ( __m128 a, __m128 b, int imm); VRANGESS __m128 _mm_range_round_ss ( __m128 a, __m128 b, int imm, int sae); VRANGESS __m128 _mm_mask_range_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int imm); VRANGESS __m128 _mm_mask_range_round_ss (__m128 s, __mmask8 k, __m128 a, __m128 b, int imm, int sae); VRANGESS __m128 _mm_maskz_range_ss ( __mmask8 k, __m128 a, __m128 b, int imm); VRANGESS __m128 _mm_maskz_range_round_ss ( __mmask8 k, __m128 a, __m128 b, int imm, int sae);

Invalid, Denormal

See Exceptions Type E3.