Back to opcode table

MOVLPS—Move Low Packed Single-Precision Floating-Point Values

Opcode/Instruction Op / En 64/32 bit Mode Support CPUID Feature Flag Description

0F 12 /r

MOVLPS xmm1, m64

RM V/V SSE Move two packed single-precision floating-point values from m64 to low quadword of xmm1.

VEX.NDS.128.0F.WIG 12 /r

VMOVLPS xmm2, xmm1, m64

RVM V/V AVX Merge two packed single-precision floating-point values from m64 and the high quadword of xmm1.

EVEX.NDS.128.0F.W0 12 /r

VMOVLPS xmm2, xmm1, m64

T2 V/V AVX512F Merge two packed single-precision floating-point values from m64 and the high quadword of xmm1.

0F 13/r

MOVLPS m64, xmm1

MR V/V SSE Move two packed single-precision floating-point values from low quadword of xmm1 to m64.

VEX.128.0F.WIG 13/r

VMOVLPS m64, xmm1

MR V/V AVX Move two packed single-precision floating-point values from low quadword of xmm1 to m64.

EVEX.128.0F.W0 13/r

VMOVLPS m64, xmm1

T2-MR V/V AVX512F Move two packed single-precision floating-point values from low quadword of xmm1 to m64.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
RM ModRM:reg (r, w) ModRM:r/m (r) NA NA
RVM ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
MR ModRM:r/m (w) ModRM:reg (r) NA NA
T2 ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) NA
T2-MR ModRM:r/m (w) ModRM:reg (r) NA NA

Description

This instruction cannot be used for register to register or memory to memory moves.

128-bit Legacy SSE load:

Moves two packed single-precision floating-point values from the source 64-bit memory operand and stores them in the low 64-bits of the destination XMM register. The upper 64bits of the XMM register are preserved. Bits (MAX_VL-1:128) of the corresponding destination register are preserved.

VEX.128 & EVEX encoded load:

Loads two packed single-precision floating-point values from the source 64-bit memory operand (the third operand), merges them with the upper 64-bits of the first source operand (the second operand), and stores them in the low 128-bits of the destination register (the first operand). Bits (MAX_VL-1:128) of the corresponding desti-nation register are zeroed.

128-bit store:

Loads two packed single-precision floating-point values from the low 64-bits of the XMM register source (second operand) to the 64-bit memory location (first operand).

Note: VMOVLPS (store) (VEX.128.0F 13 /r) is legal and has the same behavior as the existing 0F 13 store. For VMOVLPS (store) VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will #UD.

If VMOVLPS is encoded with VEX.L or EVEX.L’L= 1, an attempt to execute the instruction encoded with VEX.L or EVEX.L’L= 1 will cause an #UD exception.

Operation


MOVLPS (128-bit Legacy SSE load)
DEST[63:0] (cid:197) SRC[63:0]
DEST[MAX_VL-1:64] (Unmodified)
VMOVLPS (VEX.128 & EVEX encoded load)
DEST[63:0] (cid:197) SRC2[63:0]
DEST[127:64] (cid:197) SRC1[127:64]
DEST[MAX_VL-1:128] (cid:197) 0
VMOVLPS (store)
DEST[63:0] (cid:197) SRC[63:0]

Intel C/C++ Compiler Intrinsic Equivalent

MOVLPS __m128 _mm_loadl_pi ( __m128 a, __m64 *p)
MOVLPS void _mm_storel_pi (__m64 *p, __m128 a)

SIMD Floating-Point Exceptions

None

Other Exceptions

Non-EVEX-encoded instruction, see Exceptions Type 5; additionally

#UD

If VEX.L = 1.

EVEX-encoded instruction, see Exceptions Type E9NF.