Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
0F F5 /r1 PMADDWD mm, mm/m64 |
RM | V/V | MMX | Multiply the packed words in mm by the packed words in mm/m64, add adjacent doubleword results, and store in mm. |
66 0F F5 /r PMADDWD xmm1, xmm2/m128 |
RM | V/V | SSE2 | Multiply the packed word integers in xmm1 by the packed word integers in xmm2/m128, add adjacent doubleword results, and store in xmm1. |
VEX.NDS.128.66.0F.WIG F5 /r VPMADDWD xmm1, xmm2, xmm3/m128 |
RVM | V/V | AVX | Multiply the packed word integers in xmm2 by the packed word integers in xmm3/m128, add adjacent doubleword results, and store in xmm1. |
VEX.NDS.256.66.0F.WIG F5 /r VPMADDWD ymm1, ymm2, ymm3/m256 |
RVM | V/V | AVX2 | Multiply the packed word integers in ymm2 by the packed word integers in ymm3/m256, add adjacent doubleword results, and store in ymm1. |
EVEX.NDS.128.66.0F.WIG F5 /r VPMADDWD xmm1 {k1}{z}, xmm2, xmm3/m128 |
FVM | V/V |
AVX512VL AVX512BW |
Multiply the packed word integers in xmm2 by the packed word integers in xmm3/m128, add adjacent doubleword results, and store in xmm1 under writemask k1. |
EVEX.NDS.256.66.0F.WIG F5 /r VPMADDWD ymm1 {k1}{z}, ymm2, ymm3/m256 |
FVM | V/V |
AVX512VL AVX512BW |
Multiply the packed word integers in ymm2 by the packed word integers in ymm3/m256, add adjacent doubleword results, and store in ymm1 under writemask k1. |
EVEX.NDS.512.66.0F.WIG F5 /r VPMADDWD zmm1 {k1}{z}, zmm2, zmm3/m512 |
FVM | V/V | AVX512BW | Multiply the packed word integers in zmm2 by the packed word integers in zmm3/m512, add adjacent doubleword results, and store in zmm1 under writemask k1. |
NOTES:
1. See note in Section 2.4, “AVX and SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A and Section 22.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Registers” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
RM | ModRM:reg (r, w) | ModRM:r/m (r) | NA | NA |
RVM | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | NA |
FVM | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | NA |
Multiplies the individual signed words of the destination operand (first operand) by the corresponding signed words of the source operand (second operand), producing temporary signed, doubleword results. The adjacent double-word results are then summed and stored in the destination operand. For example, the corresponding low-order words (15-0) and (31-16) in the source and destination operands are multiplied by one another and the double-word results are added together and stored in the low doubleword of the destination register (31-0). The same operation is performed on the other pairs of adjacent words.
The (V)PMADDWD instruction wraps around only in one situation: when the 2 pairs of words being operated on in a group are all 8000H. In this case, the result wraps around to 80000000H.
In 64-bit mode and not encoded with VEX/EVEX, using a REX prefix in the form of REX.R permits this instruction to access additional registers (XMM8-XMM15).
Legacy SSE version: The first source and destination operands are MMX registers. The second source operand is an MMX register or a 64-bit memory location.
128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the corresponding YMM destina-tion register remain unchanged.
VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (VLMAX-1:128) of the destination YMM register are zeroed.
VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.
EVEX.512 encoded version: The second source operand can be an ZMM register or a 512-bit memory location. The first source and destination operands are ZMM registers.
PMADDWD (with 64-bit operands)
DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]); DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);PMADDWD (with 128-bit operands)
DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]); DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]); DEST[95:64] ← (DEST[79:64] ∗ SRC[79:64]) + (DEST[95:80] ∗ SRC[95:80]); DEST[127:96] ← (DEST[111:96] ∗ SRC[111:96]) + (DEST[127:112] ∗ SRC[127:112]);VPMADDWD (VEX.128 encoded version)
DEST[31:0] (cid:197) (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16]) DEST[63:32] (cid:197) (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48]) DEST[95:64] (cid:197) (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80]) DEST[127:96] (cid:197) (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112]) DEST[VLMAX-1:128] (cid:197) 0VPMADDWD (VEX.256 encoded version)
DEST[31:0] (cid:197) (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16]) DEST[63:32] (cid:197) (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48]) DEST[95:64] (cid:197) (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80]) DEST[127:96] (cid:197) (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112]) DEST[159:128] (cid:197) (SRC1[143:128] * SRC2[143:128]) + (SRC1[159:144] * SRC2[159:144]) DEST[191:160] (cid:197) (SRC1[175:160] * SRC2[175:160]) + (SRC1[191:176] * SRC2[191:176]) DEST[223:192] (cid:197) (SRC1[207:192] * SRC2[207:192]) + (SRC1[223:208] * SRC2[223:208]) DEST[255:224] (cid:197) (SRC1[239:224] * SRC2[239:224]) + (SRC1[255:240] * SRC2[255:240]) DEST[VLMAX-1:256] (cid:197) 0VPMADDWD (EVEX encoded versions)
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j (cid:197) 0 TO KL-1 i (cid:197) j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] (cid:197) (SRC2[i+31:i+16]* SRC1[i+31:i+16]) + (SRC2[i+15:i]*SRC1[i+15:i]) ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] = 0 FI FI; ENDFOR; DEST[MAX_VL-1:VL] (cid:197) 0
VPMADDWD __m512i _mm512_mdd_epi16( __m512i a, __m512i b); VPMADDWD __m512i _mm512_mask_mdd_epi16(__m512i s, __mmask16 k, __m512i a, __m512i b); VPMADDWD __m512i _mm512_maskz_mdd_epi16( __mmask16 k, __m512i a, __m512i b); VPMADDWD __m256i _mm256_mask_mdd_epi16(__m256i s, __mmask8 k, __m256i a, __m256i b); VPMADDWD __m256i _mm256_maskz_mdd_epi16( __mmask8 k, __m256i a, __m256i b); VPMADDWD __m128i _mm_mask_mdd_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b); VPMADDWD __m128i _mm_maskz_madd_epi16( __mmask8 k, __m128i a, __m128i b); PMADDWD:__m64 _mm_madd_pi16(__m64 m1, __m64 m2) (V)PMADDWD:__m128i _mm_madd_epi16 ( __m128i a, __m128i b) VPMADDWD:__m256i _mm256_madd_epi16 ( __m256i a, __m256i b)
None.
None.
Non-EVEX-encoded instruction, see Exceptions Type 4. EVEX-encoded instruction, see Exceptions Type E4NF.nb.